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Abstract 

The theory of propagation of electromagnetic waves in a statis- 
tically inhomogeneous medium is examined for the models of the medium: 
(1) the discrete scatterer model, (2) the perturbed continuum model. The 
theory is based on the assumption that the lifetime of a configuration of 
the system is long compared with the period of the primary time harmonic 
wave. It is generally assumed also that averages of the field obtained by 
the ensemble method are equivalent to long time averages over the time 
series that the actual field constitutes. These assumptions are examined 
and their impIicationa are pointed out. It is shown that there is a complete 
correqmndence between the methodology used for the discrete scatterer 
model and the perturbed continuum model. 4 O T N 6 R  
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I. Introduction. 

The subject of propagation of electromagnetic waves in a statistically 

inhomogeneous medium is of interest over the entire range of the spectrum 

f rom the low frequency radio region to the X-ray region. 

homogeneous medium, as the name implies, is one whose structure and 

properties fluctuate in a random manner about some value or state that is 

uniform, at least locally. 

electromagnetic wave propagation is concerned centers on the scattering 

phenomena associated with the fluctuations in the structure of the medium, 

The motivations of the interest a re  quite varied. The communications engi- 

neer is interested in ionospheric and tropospheric scattering of radio waves 

from the standpoint of the medium as a communication channel, The geo- 

physicist is interested in radio wave and optical scattering by the various 

portions of the atmosphere for what it tells him about the structure and dy- 

namics of the atmosphere. The physicist and cherxlist utilize the scattering 

phenomena as a tool to study the structure of matter. While the range of 

interests cover an extremely broad spectrum, the basic electromagnetic 

problem is the same in each instance to the extent that only classical pro- 

cesses, and no quantum mechanical processes, a r e  involved. 

A statistically in- 

The special interest in such a medium a s  far a s  

The purpose of t h i s  paper is to explore this common ground and to 

exaxnine some of the basic assumptions and methodology. 

ble to review all of the work nor do justice to the extensiveness of the sub- 

ject in this paper. 

and engineering disciplines and the spectral region of their special concern. 

However, the differences between the problems in the different regions of 
the spectrum a r e  more with respect to the character of the fluctuations in 

the structure of the medium than the scattering process per se, 

interested in ionospheric and tropospheric scattering of radio waves will find 

a review article by A. D. Wheelon") and the special issue of the Proceedings 
of the Institute of Radio Engineers on "Scatter Propagation"") very useful. 

Two Russian books by C h e r n o ~ ' ~ )  and Tatar ski'4) give admirable expositions 
of the many techniques that have been developed in the field. A ready intro- 

duction to optical and X-ray scattering a s  a tool in the study of the structure 

of fluids is available in a book by H. S. Green(5), while a comprehensive 

paper by M. Lax(6) provides a general exposition of scattering theory in the 

physicist's language. 

It is hardly possi- 

The literature is very extensive for each of the scientific 

The reader 
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11. Classes of Problems. 

The types of problems that are usually considered may be classified 

W e  may classify them according to the model that is used for the medium. 

accordingly as (1) problems of a perturbed continuum, and (2) problems of 

propagation through an assemblage of discrete scatterers. The perturbed 
continuum model assumes a priori that the medium can be characterized by 

constitutive parameters &,p ,@ that a r e  point functions of space and time. 

Their temporal variation is associated with the fluctuations in the structure 

of the medium. 

that the constitutive parameters have mean values that are independent of 

the averaging interval and that over intervals that are long compared with the 

period of the incident waves the structure of the medium is sensibly constant. 

In other words, the time variation of the medium is a slow function compared 

with the oscillations in the wave. 

- 

It is assumed implicity that the statistical regime is such 

The discrete scatterer model considers the medium to be an assemb- 

The total field is expressed as a sum of the contributions lage of scatterers. 

made by the individual scatterers. 

as the driving function exciting a given scatterer, we a r e  dealing with the 

single scattering treatment. 

the assemblage, that is, their scattered waves, to the driving function ex- 

citing a given member are considered, we are dealing with a multiple scatter- 

ing treatment. 

form, multiple scattering analyses a r e  usually carried out on a rather limited 

basis. The statistical fluctuations of the medium a r e  expressed in terms of 

the statistical character of the configuration of scatterers and the scattering 

phenomena a r e  averaged over ensembles of configurations. 

When only the primary wave is considered 

When the contributions of the other members of 

Because of the complexity of the latter in its most general 

An essential ingredient of the treatment is the assumption that each 

configuration of the scatterers, or of the perturbed continuum, is stationary 

over intervals that are long compared with the period of the primary wave. 

Doppler shifts, even on a classical basis, are, accordingly, being neglected 

entirely. 

of the randomness of phase relationships between different parts of the medi- 

um there is no broadening or dispersion in frequency associated with the 

fluctuations. 

While the statistical regime leads to incoherent scattering by virtue 

It should be stated further that we are dealing only with the classical 

regime. Such effects as Compton scattering, resonance absorption and 
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reradiation, the Raman effect and other quantum mechanical processes a r e  

ignored completely in this discussion. 

111. Discussion of the Discrete Scatterer Problem. 

The purpose of this section is to  review the treatment of the wave 

propagation through an assemblage of discrete scatterers. 

used in the study of optical and X-ray scattering, in the discussion of art i-  

ficial dielectrics, and, in general, in the development of the macroscopic 

field equations for material media from a microscopic picture of the medium. 

In the case of artificial dielectrics, where only fixed configurations such as 

ar rays  a r e  usually involved, there is, of course, no problem of fluctuation 

scattering. 

This is the model 

The first comprehensive treatment of wave propagation through an 

assembly of randomly distributed scatterers seems to have been carried out 

by L. Foldy") for the case of a scalar wave field and isotropic scatterers. 

M. Lax(6) presumably extended the treatment to anisotropic elements but the 

effectiveness of his treatment of anisotropy is open to question. 

consider for the present Foldy's model. 

considerations and problems. 

We shall 

It will serve to identify the essential 

With reference to Figure 1, we consider an assembly of N - scattering 

elements distributed over a volume V. The incident wave, that is, the wave 
which would exist in the absence of scattering elements, is considered to be 

a scalar wave having a space dependence r and time dependence e jot . + * O n  

The vector r is the position vector of a field point relative to the origin 0. 

The wave function satisfies the scalar Helmholtz equation 

q2q t ko2$o = 0 
0 

where k is the propagation constant in f ree  space. On the assumption that 

the configuration of scattering elements is fixed spatially, the total field ye) which ar ises  by superposition of scattered waves on the primary field 

is also a time harmonic field and in the region between scattering elements 

actually satisfies the same equation (1) a s  the primary wave. 

ments a r e  isotropic point scatterers, their scattered fields a r e  given by 

0 

Since the ele- 

e 
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where ? is the position of the eth scatterer. The total field given by e 

+c e 
A e 

-jko I?-$ 
e (3) 

thus varies rapidly with position within the volume V, having singularities at 
each scattering point ? 
tinuously varying field corresponding to some equivalent continuous medium 

in which a wave would travel with a modified propagation constant E. 
smoothed field is obtained by averaging wave fields such as a r e  given by Eq. 

(2) for an assemblage over a statistical ensemble of assemblageo. The result 

of such averaging, a s  Foldy shows, has both a coherent component, that is, 

a component of the totai field that bears a definite phase reiation to the pri- 

mary field, and an incoherent compenent. 

The "smoothed" field <$(r',>, is, however, a con- I '  

The 

In the study of fluctuation scattering we a r e  more concerned with the 

far zone field of the assemblage. 

zone approximation, we obtain the field of the Ith scatterer to be 

Following the usual procedures for the far 

4 
where R = 1?1,, the distance of the far field point from the origin 0, and k 
is the propagation vector directed from the origin to the field point. 

total field is 

The 

We can now direct our attention to some of the particular features of 

the problem. The amplitude of excitation of the th scatterer is the E U ~  of 

the response A i  to the primary wave qo and the response 5 to the scattered 
waves coming from all the other scatterers. Let the response of a scattering 

element to a wave of unit amplitude, with a phase reference of zero 
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a t  the scattering element be at. 
scatterers the response to  a spherical wave is the same as that to a plane 

wave since a spherical wave is sensibly plane in the neighborhood of the 

scattering element. Thus, 

Because the elements a r e  isotropic point 

and 

The far field is then 

- 
It is interesting to note that by resolving A, into two parts A: and A, and 

substituting into Eq. (5), and subsequently iterating the procedure we obtain 

an expansion of the scattered field in successive orders of multiple scattering 

interactions. 

single scattering expression in which only the c,ontribution of the primary field 

to the excitation of the scatterers is considered. 

orders involve the interparticle distances in corresponding inverse degree: 

The second te rm on the right-hand side of Eq. (4) represents the 
', 

Q 

The successive scattering 
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When the averaging process is carried out over ensembles the successive 

orders  decrease at least  as rapidly as the inverse power of the mean 

interparticle distance and, in fact, more so because d the random phase 

factors. 

mation for even rather dense distributions. 

This accounts for the success of the single scattering approxi- 

However, before discussing any averaging process we should con- 

sider several basic points. One has already been made, namely, that the 

response of a given scatterer is  the same to the scattered waves (per unit 

amplitude) from the other scatterers as to the primary wave. 

because of the isotropic point scatterer model that we have taken; the r e -  

sponse characteristic is, further, independent of the particular configura- 

tions and poses no problem to subsequent averaging processes. 

second point is that representations for the scattered fields a r e  based on 

fixed scatterers and, therefore, the response of each element to boththe 

primary wave and the scattered waves of the other elements is time 

harmonic with a time dependence ejot. 

the statistical regime is such that any given configuration has a *lifetime" 

that is long compared with the period of the primary wave. 

is a fundamental consideration in two respects, one, in so far as the motion 

of the particles is neglected in the single scattering formulation in the 

rnanner of writing the aesponse of a scatterer to the primary wave, andthe 

other pertaining to the calculation of multiple scattering in whicrjtt! retarda- 

tion effects associated with the relative motions of the particles are neg- 

lected. It is not directly obvious that the second involves the same order 

of approximation as the first, for the second consideration depends in a 
different way on the breadth of the Fournier spectrum arising from the 

motion of the particles. 

This is true 

The 

- 

It is, therefore, essential that 

The "lifetime" 

As was stated earlier, the randomness of the medium and the 

fluctuation scattering is brought into the treatment by regarding each 
assemblage or configuration as a member af a statistical ensemble. 

ensemble is characteristically expressed in terms of a distribution 

function. 

The 

- + - P  
expressing the probability d finding the particles at positions rl, rZ, 
- - - -  , TN. The probability function is usually assumed to be independent 
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of time, that is, the fluctuation in the configuration is regarded to be a 

stationary process. 

terien for neglecting the retardation effects in the scattered waves; it 

is necessary to consider the time scale of the fluctuations as was noted 

previously.. 

The stationary process is itself not a sufficient cri-  

Next, let us consider more general types of scatterers. 

the most general work on this subject has  been done by V. Twersky. 

reader is referred to his summary paper(8) in the U. R. S. I. monograph 

from the 1960 General Assembly of U. R. S. I. for details. 

approach is to set up the solution to the scalar wave equation by Green's 

function methods for an N-body system. 

e*t and he assumes that all  responses a r e  corresponding functions of 

time; the time dependence is thus split away from- the problem, 

Green's function technique expresses the total field as the sum of the pri-  

mary wave and scattered waves that a r e  given in terms of integrals over 

the boundaries of the scattering bodies. 

both the primary field over the body and the contributions to the field from 

all other bodies, considering, of course, a fixed configuration of the as- 

sembly. 

over an sasemble of configurations to discuss the statistical behavior of 

the system and the fluctuation scattering. 

Some of 

The 

Twersky's 

The time dependence is again 

The 

f n each integral there appear 

Twersky then proceeds to average his general representation 

It is more convenient for our present purposes to express the pro- 

cedure in somewhat different language that is suited particularly to dis- 

cussion of the far zone field of the system. 

we consider a single scattering body and an incident plane wave, we note 

that we can choose any reference point in the body as a local origin OL 
and with respect to that origin the far zone field takes the form of the field 
of a directive point source, namely, 

Referring to Figure 2, where 

--+ -D 
Here k 
gation vector in the direction of observation from the origin. 

Fo ( ko, k ) gives the angular dependence of the far zone field, that is, it 

expresses the directivity. 

tributions from the elements of volume of the scattering body occasioned 

is the propagation vector of the incident wave and k is the propa- 
0 

The function 
3 - P  

It contains the interference effects among con- 
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by the finite extent of the body and, therefore, phase differences between 

wavelets from different elements of volume. 

that the space factor, as Fo ( ko, k ) is generally named, depends on the 

aspect presented by the scattering body to the incident plane wave. It is, 

in general, a complex quantity with a phase angle depending on phase 

reference for the incident wave and on the structure of the scatterer. 

basic definition for Fo will be taken to be relative to a plane wave whose 

phase reference is at the local origin in the body. 

It is important to remember 
+ A  

The 

Suppose, now we have an assemblage of scattering bodies, for 

simplicity assumed to be all alike. 

a r e  assumed to be taken a s  local origins. 

approximation we can obtain the total scattered field in the far zone of the 

configuration by the same superposition procedure a s  before with the space 

factors playing the role of the amplitudes A" of the isotropic point scatter- 

er case. Thus, the total field in the far zone is given by 

Equivalent points in each of the bodies 

Then, in the single scattering 

where R is the distance f rom the general origin of reference for the system 

to the point of observation and? is the position vector from the general 

origin to the local reference origin in theCth scattering body. 
1 

Although, formally, Eq. ( 7 )  is the identical with Eq. (5) in the single 

scattering approximation, that is, with the last  term in Eq. ( 5 )  being neg- 

I lected, we are confronted here with a new complication. In the case of 

isotropic point scatterers all the space factors, given there by 8 f VJ 
are the same and there is no orientation factor involved. 

0 + 4  case, however, the factors Ft 
we consider averages over ensembles we must keep in mind that the 

Fe O1s differ from one sample of the ensemble to another. The statistical 

representation of the system will have to be given by a more general prob- 

ability function 

In the present 

( ko, k ) do depend on orientation and when 
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in which? is the position of the lth scatterer and s is a variable or set  

of variables describing the orientation of the body. 

scattering a r i ses  from both the fluctuation in the relative positions of the 

bodies and the fluctuation in  their orientations. 

I e 
The fluctuation 

The response of a given scattering body to a more general type of 

field, for example, such as the field due to all the other scatterers is a 

much more intricate matter. The near zone structure of the field pro- 

duced by any one scattering body, which we  may have to consider for dense 

distributions, is neither isotropic nor dependent on /?-?I in the simple form 

of Eq. (2). It is not possible to represent the interaction between scatterers 

by functions of only the distance between them. 

t ra ry  field can be resolved into a spectrum of plane waves the far zone 

scattered field of a body excited by an arbitrary field is a superposition of 

components such as given by Eq. (6) from all the component plane waves, 

and, therefore, the result takes the form 

c 

However, since any arbi- 

The notation 3 ( f ) signifies a function of the direction of the field point 

f rom the local origin. 

action between the scattering bodies will depend on the particular pair of 

bodies, their relative orientations and the distance between them. Thus, 

the total contribution of the th scatterer to the far  zone field due to 

excitation by the scattered waves from the other N-1 scatterers is 

3 
The form of 3 ( k- ) when we consider the inter- 

--. 
where we have written qmt ( g ?  -5; sm, s4) to show that the response 

is a function of the relative positions of the bodies and their orientations. 

The total field, in the far zone, is now given by 

m 
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+ +  
jk .  r 

'+-*  * +c e 
tz qrn; k; r m y  Elm, 

MPC 

where R is now the distance from the general origin 0 to the field point. 

Twersky's treatment of the problem to which we referred earlier 

constructs the interaction terms a s  well a s  the single scattering response 

amplitudes contained in the quantities F 

over the boudaries of the Scatterers. 

here is simply a rearrangement of his and, of course, does not give ex- 
plicitly the form of the response amplitudes. It should be noted that, in 
principle, eachymC can be resolved into two parts, ( I  )- the excitation of 
t h e t h  scatterer by the first order wave from the mth scatterer which is 

excited by the incidence of tne primary plane wave on the mth scattereg and 

(2) the excitation ot the tth scatterer by the higher ordered waves irom 

the mth scatterer excited by the incidence or scattered waves from all oi 

the other bodies on the rntn scatterer. 

Eq. (9) can then be developed into successive orders OX multiple scattering 
in a manner similar to that described for the system oi isotropic point 

scatterers. 

expression of the field of a single scatterer excited by a plane wave. 

When, however, the distance between scattering bodies is sufficiently 

large it is possible to resor t  to far zone representations of the form of 

Eq. ( 6 )  to express the scattered waves incident on one body from another. 

0 and qmt in the form of integrals 8 
The formulation whiEh we have used 

The multiple scattering term oi 

There is unfortunately no simple way of writing the general 

All of the remarks we made about the averaging oi the field over an 
ensemble or configurations for the case of isotropic point scatterers apply 

to the more general system. 

have a lifetime bat is long compared with the period oi the incident wave. 
The lifetime or a configuration is a separate problem that, in fact, must 

be considered before making any generalizations about the averaging over 

ensembles and the biggest gap in the theory of propagation through a 

Each configuration oi the ensemble must 



-11- 

random distribution of scatterers is the lack ot analyses 02 the actual 

statistical regimes under which physical systems operate. 

In the foregoing we limited our discussion to scalar wave fields. 

The extension to the electromagnetic field requires only formal changes 

in what we have written for the case of the general scattering bodies. 

treatment ot isotropic point scatterers is excluded by the electromagnetic 

field. 

spherical waves of the previous discussion must be replaced by dipole 

fields with the scalar amplitude A1 approximately replaced by a vector 

dipole moment. In the case 02 the general scattering body the far zone 

scattered wave amplitude 9 ( ko, 2) becomes a complex vector quantity 

that depends not only on the aspect ot the body with respect to the incident 

wave front out also with respect to the polarization of the incident wave. 

If the incident wave is 

The 

The elementary scatterer for the latter is a dipole and the simple 

0 - h  

jcJ-2 0 .a + 4 

Ei = Eo e 

the formal representation of the field in the far zone of the scattering 

configuration is 

.*a 3 + - 9  

'e -jko. R -jkoR -j C ko-k ) . 
4 - 9  - . +  
E = E  0 e + e  3 ° ( k o ,  L k )  e 

R 

+ c  
1 

+ 
jk . 

e 

I 

the factor ejw having been factored out. 

The polarization of the scattered wave depends markedly on the 

structure and shape 01 the scattering body unless the latter is a sphere of 
isotropic material. 

lessly complicated and useful results can be obtained only trom the single 

The treatment ot multiple scattering becomes nope- 
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scattering component of the expansion. The commonly used theory of the 
scattering of light and X-rays by gases is baaed on the single scattering 

approximation. h general, even in single scattering, there are depolari- 

zation effects and the fluctuation scattering has both amplitude and polari- 

zation fluctuations. 

experimental work because tne incident radiation is usually both incoherent 

and randomly polarized. 

The latter a r e  lost in  the background, hawever, in 

W e  should note another level or approximation that is frequently 

introduced into the single scattering treatment. 

procedure, the Born approximation, used in many instances to develop an  

approximate solution to a scattering problem. 

by a body ot permittivity€can be regarded as radiation from dipoles in- 

duced in the body under the influence 01 the primary wave. 

tion vector Pin the body is given by 

It is a form ot a general 

The process of scattering 

The polariza- 
---r 

+ 
where E is the total field within the body. 

body is a dipole 01 moment PdV and the scattered field is the sum of the 

component fields set up by the elementary dipoles. The form of the Born 

approximation to Which we have just alluded is to take thefiield within tne 

body to b e  the incident rield 5 to a first approximation. 

An element of volume dV ot the + 

--+ 
That is, 

Under t h h  approximation, when the incident field is linearly polarized, 

all the elementary dipoles making up the scatterer a r e  oriented in the same 

direction and, consequently, tneir fields a r e  all polarized in tne same di- 

rection. The space ractor F ( ko, a ) is then, within this approximation, 

a linearly polarized vector oriented with respect to q a t  each point in the 

far field in the same way as the field of dipole is oriented with respect to 

the dipole moment. 

+o d 

In the case of X-ray scattering, for example, where the scatterer 

is an atom or a molecule, the induced polarization a r i ses  rrom a displace- 

ment or the electrons from their reference equilibrium positions under the 

action or the incident field, that is, within the Born approximation. The 

calculation ot the induced polarization proceeds exactly along the same 
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lines as the calculation of the induced polarization in the ionosphere in 

the Appleton-Hartree treatment ot propagation through the ionosphere. 

Further reference to this treatment will be made later when we discuss 

the theory ot scattering by a perturbed continuum. 

Ensemble Averages of the Scattered Field 

its time dependence is obtained simply by multiplying in the factor eiot 
and taking the real part. The observed field, on the other hand, is not 

simply time harmonic but undergoes random fluctuations associated with 

the tluctuations in the configuration ot scatterers. As was stated earlier 

the point of view from which one generally proceeds is that statistical be- 

havior of: the configuration is formulated in terms ot an ensemble of con- 

iigurations with which is associated a probability function giving the 

proDabiiity of a given C O i ~ i g u r a t i G r r .  Corresgoii&ng?y, the t i d d  given by 

Eq. (1O)is to be regarded as a sample of an ensemble of fields, the prob- 
ability of a given field being the probability ot the coniiguration t rom 

which it arises. The basic assumption is that the averages ot the actual 

field, the square ot the absolute value ot the field, etc. over sufficiently 

long intervals of time a r e  equal to the corresponding averages ob the 

sample iields over the ensemble. 

IV. 
The field calculated by Eq. (10) is for a fixed configuration and 

The two most important averages are those 01 the field, <E>, and 

of the square 02 

(12) 
3 - B  E P (rl,  sl . .  . . . , -m 

s ) dF1.. . .dfN ds,. dSN rN’ N 

(13) 
+ 

8 )G1. .. . a;fNdS,. .. . dSN (I El2), $./ [ElZ P sl , .  . . . , ‘N’ N 

Writing the field given by Eq. (10) as 

r+ 
where E l  represents the scattered wave, 
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we have 

Eq. (15) can be rewritten in the form 

The form-of Eq. (16) has been regarded by Lax(6) as the basis for  inter- 

preting<E > as the coherent component of the scattered field. The first 

par t  of the right-hand side of (16) hiplies an interaction or interference 

between 

with E. while the second part  

S 

andg=), that is, t h a d s )  has a determinate phase relationship 
+ 
L 

is the standard form of the mean square fluctuation of a quantity associated 

with the statistical ensemble. It appears, however, to the writer that this 

interpretation of(3*) requires further validation vis 

E (r, t) that the actual field constitutes and which in the time domain cannot 
be  resolved readily into a time harmonically varying component with fixed 

phase on which is superimposed a fluctuating component. 

of a segment of the time series over no matter how long a time interval is 

not a unique quantity. 

long interval is a unique statistical quantity but that must be related separate- 

l y  to the ensemble averagel(Es)(. 

a multiplicative constant IE I 
average being over a number of cycles of the harmonic variation. 

vis the time ser ies  
+ +  

The time average 

a +  
The time average of ) E  (r, t ) j  over a sufficiently 

2 
The situation i s  quite different with respect to((E1 >. Except for 

2 is  the average intensity in the field, the 

The 
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time factor ejot disappears from the situation and need not be considered 

further in interpreting(IE1 > . Thus the ensemble average</E\2)and the 
2 average of the time ser ies  1E (?, t)l should be equivalent for time aver- 

ages over sufficiently long intervals. The only limitation on the relation- 

ship resides in the primary assumption that the lifetime of a configuration 

is long compared with the period of the primary wave. 

2 

The explicit evaluation of (12) and (13) depends, of course, on the 

details of the distribution function and the structure of the scatterers. 

Various examples a r e  to be found in the work of Foldy") and in the theory 

of optical and X-ray scattering (see Green(5)). 

whkh we wish to call attention here in relation to the evaluation of<lEd > 
in the far zone. 

(E;12 and Ei* <Es > and E, <Es) . In most scattering experiments the in- 

cident field is in a collimated beam produced by a directive antenna or iens 

system and the far zone field is observed at angles outside the region where 

There a r e  a few points to 
2 

It is observed that Eq. (15) for the average contains terms 
--+ -D e *  + *  -b 

~ 

4 5 is significant. Thus, except for small angle scattering, that is, forward 

scattering and small angles about the principal direction of the incident 

wave, E,=O and we are concerned solely with Es. The latter has been 

expressed in Eq. (10) in two parts, 

+ + 

+ + 
E = g o  + E s ( q # )  

S S 
+ 

0 where Es 
ties F 

is the single scattering component given in terms of the quanti- 
+ o + +  4 

C (Ro,k) and Es(m,l) is the multiple scattering component. T h s ,  

It is very difficult to say much of anything about the last  two terms. 

must be remembered that the averaging process involves averaging over 

the orientation variables 

a r e  no forces coupling the orientations of scatterers the contributions made 

by the terms involving multiple scattering may be expected to be small 

compared with the single scattering terms even when there a r e  forces 
that effect correlations between the positions of the scatterers,  for we 

It 

a s  well a s  the position variables. If there 2,  sm 
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are averaging over random orientations of the component vectors. Of 

course, the importance of the multiple scattering diminishes also with 

decreasing average number density cf scattering bodies. 

In so far a s  the single scattering te rm is concerned we observe 

that 

R2 <\E + 0 2  > =  
S 

S )d?,dS, . e . .  d;?NsN 4 + 
rN' N xP(r,, s,, ...., 

-0 + -* 08 
The quantities 9 and Fro* F, 
scatterers but do depend on their orientations. 

or5entations is independent of that over positions, the distribution function 

factors into 

do not depend on the positions of the 

If the distribution of 

In that case the integration over the orientation variables can be carried 

out separately and what is of importance as far as orientations a r e  con- 

cerned is 

O * P  S ds, . . . .dsN 
e m  m 

This yields 

The s u m  can be resolved into two parts, one for &m and the other &TI. 

The result is then 
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the double prime signifying that integration is over all variables other 

than r and Tm. In cases such as a fluid in statistical equilibrium the two 

particle correlation probability’isafunction of only the distance I? -? L 
4 

e 
C m  

If there is no correlation of the orientations of the scatterers, we 
have 

and 

R ~ < I E  bl “i2> = N <ij?o~ 5s + j<8°>12FF/j’e 

The double sum can actually be simplified further when p, (?,?m) is a t 
function p( I ?  FmI) but that is not of special interest for this discussion. 

It is interesting to note that the first te rm in Eq. (22) is proportional to 

the number N of the scatterers. 

ponent of the scattering for when the scattered fields a r e  completely inde- 

pendent of one another owing to complete random phases, the total intensity 
is the sum of the intensities of the component fields. 

the other hand, involves interference effects between component fields. 

--*a - a +  
-j(%-k) (5 -Im) 

3 +  - * *  
~ ( r  e , rm)dr I dr, 

I d C  (22) 

t- 

This is expressive d the incoherent com- 

The second term, on 

V. The Perturbed Continuum Model 
In this model the medium is considered to be a continuum whose 

density, and, consequently its electromagnetic properties, undergoes 

random variations. 

case of the troposphere or they may be the statistical thermal fluctuations 

in a fluid in thermal equilibrium. 

analysis is taken to be the macroscopic equations such a s  Maxwell’s 

The fluctuations m a y  be due to turbulence as in the 

In any case the starting point of the 
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equations for a medium with macroscopic and continuous, or step-wise 

continuous, constitutive parameters or the various wave equations for 

continuous media. 

a r e  already equations for averages of fields which in the microscopic 

picture of the medium are rapidly varying functions of position and in the 

microscopic domain are also randomly varying according to the statistical 

behavior of the assemblage of atomic, electronic, and molecular corn-, 

ponents that make up the medium. 

for a continuum from the microscopic level was first carried out by H. 

lo rent^'^); a more modern phrasing of the problem and the averaging 

It is important to remember that all cd such equations 

The development of the field equations 

process will be found in the excellent monograph by Rosenfeld (10) . 
The electromagnetic properties of the medium are characherized 

by the constitutive parameters, E , p m h i c h  as we have stated a r e  regarded, 

aside from fluctuations, to be continuous 01 step-wise COE~~ECQCS flmctions 

of position. As we know, thgse parameters, strictly speaking, are de- 

fined as functions of frequency, that is, for fields varying harmonically 

with time. The fluctuations in the properties of the medium are assumed 

to be representable by constitutive parameters having statistical proper- 

ties. It is assumed 

that 

Only the electric permittivity is considered usually. 

where 

the steady state of the continuum about which the structure fluctuates, 

w h i l e u c  t) is a random function of position and time. 

(r) is the mean value, generally assumed to be the permittivity of 

It is well to recognize the implicit assumptions on which the model 

It implies that the statistical regime is such that the average is based. 

J 
*O 

is independent to ti and r f o r  "sufficiently" long intervals Z.. The rela- 

tion b e t w e e n h d  the permittivity of the unperturbed steady state continuum 

has been investigated by K. Budden'll) for the ionosphere on the basis of 

the Appleton-Hartree type of analyses of wave propagation in the idnosphere. 
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c 
He showed that €differs f rom the permittivity of the unperturbed continuum 

and that the effect is significant for the treatment of long wave propagation. 

the microscopic picture of the medium. 

The continuum and the appropriate field equations for time varying phe- 

nomena in the continuum such a s  wave propagation a r e  derived from the 

microscopic picture along lines very similar to our discussion of pro- 

pagation through an assemblage of discrete scatters. 

arrived at by taken time averages over the microscopic fields and distri- 

butions of discrete elements. 

field equations represent the variations in time averages over intervals 

in time that a r e  long compared with intervals over which the microscopic 

representatives a r e  averaged, that is, long compared with the mean life- 

time of the configurations of discrete elements. Thus, fluctuations in the 

continuum constitute an overlay on the fluctuations in the microscopic 

fields and microscopic structure of the medium. When the fluctuations 

involved are associated with thermal effects the fluctuations of the con- 

tinuum are, of course, themselves expressions of fluctuations in the 

microscopic structure. 

fluctuations in the continuum and the treatment of the situation in terms 

of already averaged microscopic parameters to the averaging process 

carried out in passing from the microscopic domain to the continuum. 

It is also assumed that fluctuations a r e  slow on the time scale of 

This requires some discussion. 

The continuum is 

The time varying field and microscopic 

There yet remains the problem of relating the 

The third consideration is the relation between the statistical 
-+ 

properties of ~ ( t ,  t) as a function of time, for say q given position r, with 

the statistical properties of E(r, t)as a function of ?for a given t. 

involves both the question of multiple scattering and the structural features 

of the medium such as long range forces and short range forces between 

atoms, electrons, ions, etc. Budden's work, to which we referred pre- 

viously, constitutes a partial treatment of this matter. 

for a far more comprehensive study of this aspect of the subject. 

-w This 

There is need 

Finally we must take note that when the explicit problem of pro- 

pagation through the perturbed continuum is treated the primary field is 

taken to have a harmonic time variation eje and the total field is likewise 
taken to have a time dependence 

imposed. 

scatterers the harmonic time dependence is factored out and the fluctuating 

on which the fluctuations are super- 

As was done in the treatment of propagation through discrete 
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medium is treated in terms of an ensemble of perturbed configurations, 

each of which has a lifetime that is long compared with the period of the 

primary wave. 

as the primary field; Doppler effects and the associated dispersion in fre- 

quency of the scattered field a re  neglected. 

more clearly the problem to which we referred earlier, namely, that of 

establishing relationships between the "lifetime" of the perturbed con- 

tinuum configurations and "lifetimes '' of microscopic configurations on 

which the continuum itself is based. 

VI. Calculation of the Scattered Field. 

Again, the scattered field appears a t  the same frequency 

One recognizes here perhaps 

The purpose of this section is to examine the rather standard 

procedure for calculating the fluctuation scattering and to show the relation 

to the methods employed in the treatment of an assemblage of discrete 

scatterers. 

within which the permittivity is assumed to be given by Eq. (1 ). 
cident wave is again 

Consider, as shown by Figure 3, a volume V of the medium 

The in- 

jw -Eo 3) + -+ 
e 

0 
Ei = E 

E t  is assumed that the relation between the polarization and the field in- 

tensity that holds for a medium in the steady state, that is, the unperturbed 

medium, namely 
+ 4 
P = (h-€JE 

can be extended to the fluctuating medium. Consequbtly, the fluctuation 

gives r i se  to a fluctuating polarization vector, 
--. --. 4 + 
P t A P  = (et&-&) E, 

0 

or 
--+ -* -+ 

AP = b E ( r ,  t) E, 
a + 

and the element of volume d V  a t  the point r is a radiating dipole A P  dV. 
The "fluctuation scattering" is ascribed to bP and is assumed to be sepa- 

rable from the coherent scattering (which represents just the ordinary 

propagation of the wave) on this basis. 

-+ 

+ 
The field vector E appearing in Eq. (25) and Eq. (27) is strictly 

speaking the total field a t  the given point. It consists of an average 
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component in relation to the statistical variations) and a fluctuating com- 

ponent associated, first of all, with the matter in the element of volume 

at the given point and, secondly, with scattered waves coming from other 

elements of volume of the region. 

V 

It is usual to assume a t  this point, as - - 
was done, for example, by Booker and Gordon(12) in their classical paper 

on scatter propagation, that the field 3 can be replaced to a first approxi- 

mation by the incident field Ed. 

scattering and employs the Born approximation which we have already 

described in Section IIL The Born approximation is a reasonable one 

when the body is a "soft" scatterer, that is, when 

-+ 
This neglects all orders of multiple 

Correspondingly, the Born approximation for the perturbed continuum is 

based in the assumption that the fluctuations a r e  such that 

On the basis of the Born approximation the fluctuating component 

of the dipole moment associated with the element of volume V is 
+ 4  

j((klt-ko* r)  

dV (29 1 
-+ 

A P ~  = A E  '-.*, e 

We can proceed by two different directions: In one, we do precisely the 

same thing as in the treatment of the assembly of discrete scatterers, 

namely, consider the statistical problem in terms of an ensemble of per- 

turned configurations. 

his a lifetime that is long compared with the period of the incident wave, 

the elementary dipoles given by Eq. (29) can be regarded as having a time 

dependence e'= and the radiation can be computed on that basis. 

ather direction, we consider the elementary dipole moment to be a general 

function of time as determined by the explicit form that A€ (?, t) takes in 
combination with the time dependence of the incident wave. The field is 

then set up in terms of retarded polarization vectors a s  prescribed by 

the general form of the solution to the general time dependent field equations. 
The scattered field is thus obtained as a time series, and averages a r e  

On the assumption that each sample of the ensemble 

In the 
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VII. 

obtained subsequently in the time domain rather than over an ensemble 

of perturbed configurations. 

The Method of Ensemble Averaging. 

Let us first proceed along the line of ensemble averages. The far 

field of harmonically varying dipole is give by 

- - jkR 
-+ + 

- ae E =(';')p sine e 

R 

where&is a unit vector shown in Fig. 4. 

dV is 

Thus the field due to the element 

+ +  - 
-jko r - jkoR + 

(31) 
-+ 

ae dES =(;LJAGE 0 e dv s ine  e 
?I 

-* 
where haga in  is shown in Fig. 4b, and is the distance from the element 

of volume to the field point, By the usual procedure for developing the far 

zone field, the factor e -jqz can again be transformed to 

-jkoR - jkoR j2- rj 
w e  . e  - e - 

R R 
where R is the distance from the origin 0 to the field point and k .) is the 

propagation vector in the scattered wave in the direction from 0 to the 

field point. We  have then, 

The total scattered field is then 
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It is recognized a t  once that Eq. (34) is the equivalent of the single 

scattering component Es 

scatterer model. The quantity 

- , O  
of Eq. (10) that was developed for the discrete 

4W€ 
is the equivalent of -0 F eo,*, the space factor of a single scatterer; the 

summation over the discrete scatterers has passed into an integral for 

the continuous distribution. 

As was done in  the discussion of the discrete scatterer model the 

scattered power is computed for a fixed perturbed configuration: 

Introducing the vector = ?-? we transform the above to 

The inner integral is except for a constant the autocorrelation function of 

the permittivity perturbation used by Booker and Gordon, namely, 

1 
P (3, = - Ir)Ed&) A&(i%B d? 

@ € I 2  v V 
(37) 

2 where (A€) 

volume. Hence, 

is mean square value of the perturbation over the scattering 

In order to obtainR2 <IEJ> 

the ensemble of perturbed configurations. 

it is necessary to average this expression over 

In the present language the 
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configuration is characterized by the autocorrelation function p (a and 

the ensemble average over Eq. (38) is obtained by merely using the en- 

semble average of p (f). 
- 

Hence, 

V 

It is important to keep in mind that this result is based on the 

single scattering approximation and the Born approximation. 

approximation had been used in Section IV to compute the space factors 

O, Eq. (20) would have involved the autocorrelation function of (E -g),  

If the Born 

Fe 
which in the discrete scatterer case is a stepwise continuous function of 

position. 

scatterer model and that of the perturbed continuum model is actually 

complete. 

The correspondence between the treatment of the discrete 

Before leaving the ensemble averaging discussion it is of interest 

to note the significance of the integral in Eq. (39). Letting 
+ 
K = P - k  

2 

0 
-* 

we obtain a function of K, 

t V 
namely the Fourier transform of the function m. 
is thus within a factor of sin 8 the segment of the Fourier transform of 

'm corresponding to the physically admissible region of 2 given by 

The scattered power 
2 

VIII. The Time Series Method. 
Let us consider now the second procedure referred to in Section VI, 

namely, that of obtaining explicity the time dependence of the scattered 
field in  terms of the assumed time variation of the medium. 

point should in this case be the general time dependent field equations. 

program for dealing with Maxwell's equations for time varying media, that 

The starting 

The 

- t The function p (3 is regarded to be zero when $lies outside the scattering 
volume. 
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is, the construction of solutions in terms of potentials and the construction 

of the differential equations satisfied by the potentials, has, to this 

wri ter ' s  knowledge, never been carried out. There a r e  many difficulties 

and, in fact, when the changes in the structure of the medium are very 

large or very rapid it is necessary even to examine the basic definitions 

of the constitutive parameters. However, when the variations are small 

and are slow compared with the frequency of the primary wave it is reason- 

able to retain the concept of permittivity and to use Eq. (23) as a represent- 
ation of a time varying medium. 

interesting paper by H. Staras(13). 

basic expressions for the scattered field the following is based on Staras' 

work. 
medium by a distribution of dipoles discussed in Section VI, and we use 

again the Born approximation so that the dipole moment of an element of 

volume is 

The regime of fluctuations of small amplitude was treated in a very 

Except for the method of setting up the 

Our starting point is again the representation Qf the perturbed 

+ where as before ko is the propagation vector of the primary plane wave, 

and ?is the position vector of the element dV. 
with the ensemble method we retain the time dependence of A€G t) and, 

consequently, the dipole moment of the element of volume has a time de- 

pendence that is a composite of the fluctuations associated with& and the 

harmonic variation of the incident field. 

solution for time varying sources, namely, the retarded potentials. Since 

the source is given as a dipole it is convenient to use the Hertz vector, 

Now, however, in contrast 

To get the field we use the general 

V 0 

+ 
whereCP;S] - is the retarded value of AP (t), that is, evaluated at t - R/C, 
where R is the distance from dv to the field point and c is the velocity of 

propagation in f ree  space. 
-b 

- 
Inserting the expression for AP we obtain 
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4n.€ 
0 

- J R 
V 

J 
V 

The electric and magnetic fields a r e  obtained from the Hertz vector by 

the relation 

i 
the space derivatives being with respect to the coordinates d the field . 

point. 

ing from a generalized wave equation for the Hertz vector for a time vary- 

ing medium whose permittivity has the form of Eq. (23). 
that Eq. (42) is the first order approximation to the Hertz vector developed 

in a power ser ies  in terms of a smallness parameter measuring the ampli- 

Eq. (42) was developed by Staras by a more formal procedure start- 

Staras showed 

tude of the fluctuations. 

It is observed from the form of Eq. (44) that the complete express- 
-+ --+ - - 

ions for E and H involve'time derivatives of the funct ionAIc t). Haw- 
S S 

ever, for the regime under consideration the variation of& is very slow 

compared with the variation associated with the time factor ejm of the 

primary wave. If we neglect the time derivatives of t), a s  Staras 

did in his work, the far zone field can be written down a t  once from the 

elementary dipole field given previously in Eq. (30). 
sources a r e  regarded a s  being essentially time harmonic dipoles with 

slowly varying amplitudes determined byA&(;f, t). 

approximation, then, the far zone scattered field is given by 

That is, the dipole 

To this order of 
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dV (45) i 
- 

jwt - jgo * ?  - jk R 
0 

e -b E S = - 4 m 0  k 2 sin8 E 0 e / / E ( i ? J t - F )  e 

- R 
V 

with 8 and & having the same definitions as befor e. 

Again, with the condition thatdSis a slowly varying function of 

time, the power flow in the far field can be obtained by the procedure for a 
purely harmonically varying field, that is, 

* + *  2 P = 2 Re ( E x  H ) .% = const. lEsi 
2 

-b w h e r e a R i s  a unit vector from the origin to the field point. 

we can make the far zone approximation in so far a s  the factor e 

in the integrand is concerned. 

the distance from the origin to the field point is l a rg t  compared with every 

linear dimension of the scattering volume V. 

Furtherm-ore, 
-jkoR/ w 

The only requirement for the latter is that 

We obtain then 

C 

R2 IE I 2  = const. )Eo( 2 sin 
S 

where R is the distance from the origin to the field point a n d g  is the propa- 

gation vector (associated with a pure time harmonic field) in  the direction 

from the origin to the field point. 
In this way the power flow, per unit solid angle now, is obtained as 

a time dependent function corresponding to the fluctuations ofbf .  

foregoing development shows clearly the approximations involved in genera- 
ting this time series representation of the power function. 

now to be obtained as a time average over an interval that is long compared 

with the fluctuations; mor e precisely 

The 

The average is 
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T n 

d -T 

v v  -T 

..+ + 4 4  - j (ko -k) (r - r l )  

x e  dV OW 

The quantity 

T 
n 

-T 

can be rewritten as - 
R T-- 

P C 

I- 
C 

T 
F 

I f a d o e s  not change measurably over the time interval R-R', - the latter 

can be neglected in the integral and we have the basic time correlation 
C 

function 

(47 1 

-T 
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The average power is then given by 

V 

In this way the statistical property of the scattered field is expressed 

directly in terms of a statistical property of the medium. 

lation function now enters into determining the average power rather than 

the average value of the spatial autocorrelation function of the permittivity. 

The time corre- 

When the statistical structure ofAE(z, t) is such that 

that is, the time correlation is a function of only the relative positions the 

integral of Eq. ( 5 0 )  can be treated in a manner similar to that whereby 

Eq. (36) was transformed into Eq. (39). In that case, 

V 

and the average power is essentially proportional to the Fourier transform 

of the time correlation. 

The time ser ies  method has some more satisfying features than the 

The line of development shows more clearly the condi- ensemble method. 

tions that must prevail in making the approximations involved. 

quirement on the "lifetimes" of perturbed configurations shows itself more 

explicitly in the requirement that the functiona€[F, t) must remain sensibly 

constant over a number of oscillations of the primary w e  in the computa- 
2 tion of IE,I . 

The re-  

IX. Summary 

The theory of propagation of electromagnetic waves in randomly 

varying media has been examined for the discrete scatterer model and the 

perturbed continuum model. 
in both instances was shown together with the underlying assumptions. 

primary assumption underlying the treatment of both models is that the 

The equivalence of the methodology employed 
A 
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statistical regime is such that a configuration of the system has a lifetime 

that is long compared with the period of the primary waves. The problem 

of great  importance that remains to be solved is that of rapidly moving 

scatterers or  rapidly varying media. 

especially significant in studying highly turbulent atmospheres and plasmas 

The solution of the problem will be 

in which the kinetic temperatures a r e  very large. 

It has been shown also that the current theory is limited to a regime 

of fluctuations of small amplitude. Multiple reflection effects have yet to 

be evaluated properly even for this regime and the long lifetime situation. 

In the case of discrete scatterers the effect of orientation and of the dis-  

tribution of orientations must be investigated farther. In the case of the 

perturbed continuum model a more careful analysis must be made of the 

mean value of the permittivity and the effective field within the medium 

from which the polarizatio-ii should be determined rather + k r ~  iseiog the 

Born approximation. 
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SCATT€RED FIELD 

FIG. 1. SCATTERING BY A CONFIGURATION OF POINT SCATTERERS. . 
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F I G .  2, SCATTERING BY A CONFIGURATION OF SCATTERING ELEMENTS OF 
NON-NEGLIGIBLE SIZE.  



SCATTERED FI EL0 

F I G ,  3 .  SCATTERING BY A FLUCTUATING MEDIUM. 
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